I assume you mean f(x) = int (3x - 3 secx)dxf(x)=∫(3x−3secx)dx.
So, We have,
f(x) = int(3x - 3secx) dxf(x)=∫(3x−3secx)dx
= 3int xdx - 3intsec xdx=3∫xdx−3∫secxdx
= 3/2x^2 - 3ln|sec x + tan x| + C=32x2−3ln|secx+tanx|+C
Now, According to the Question,
color(white)(xxx)f((7pi)/4) = 0×xf(7π4)=0
rArr 3/2((7pi)/4)^2 - 3ln|sec ((7pi)/4) + tan ((7pi)/4)| + C = 0⇒32(7π4)2−3ln∣∣∣sec(7π4)+tan(7π4)∣∣∣+C=0
rArr 3/2(22/4)^2 - 3ln|(-1/4) + 0| + C = 0⇒32(224)2−3ln∣∣∣(−14)+0∣∣∣+C=0
rArr 3/2 * 121/4 - 3(-1.39) + C = 0⇒32⋅1214−3(−1.39)+C=0 [As ln(1/4) = -1.39ln(14)=−1.39 (approx)]
rArr 49.545 + C = 0⇒49.545+C=0 [Using Calculator]
rArr C = -49.545⇒C=−49.545
So, f(x) = 3/2x^2 - 3ln|sec x + tan x| - 49.545f(x)=32x2−3ln|secx+tanx|−49.545
Hope this helps.