What is f(x) = int 3x-3secx dxf(x)=3x3secxdx if f((7pi)/4) = 0 f(7π4)=0?

1 Answer
May 20, 2018

f(x) = 3/2x^2 - 3ln|sec x + tan x| - 49.545f(x)=32x23ln|secx+tanx|49.545

Explanation:

I assume you mean f(x) = int (3x - 3 secx)dxf(x)=(3x3secx)dx.

So, We have,

f(x) = int(3x - 3secx) dxf(x)=(3x3secx)dx

= 3int xdx - 3intsec xdx=3xdx3secxdx

= 3/2x^2 - 3ln|sec x + tan x| + C=32x23ln|secx+tanx|+C

Now, According to the Question,

color(white)(xxx)f((7pi)/4) = 0×xf(7π4)=0

rArr 3/2((7pi)/4)^2 - 3ln|sec ((7pi)/4) + tan ((7pi)/4)| + C = 032(7π4)23lnsec(7π4)+tan(7π4)+C=0

rArr 3/2(22/4)^2 - 3ln|(-1/4) + 0| + C = 032(224)23ln(14)+0+C=0

rArr 3/2 * 121/4 - 3(-1.39) + C = 03212143(1.39)+C=0 [As ln(1/4) = -1.39ln(14)=1.39 (approx)]

rArr 49.545 + C = 049.545+C=0 [Using Calculator]

rArr C = -49.545C=49.545

So, f(x) = 3/2x^2 - 3ln|sec x + tan x| - 49.545f(x)=32x23ln|secx+tanx|49.545

Hope this helps.