How do you express cot3θcos2θtan2θ in terms of non-exponential trigonometric functions?

2 Answers
Jun 9, 2018

cos5(x)sin5(x)cos4(x)sin3(x)sin3(x)cos2(x)

Explanation:

We write
1tan3(x)tan2(x)cos2(x)

1tan5(x)tan3(x)cos2(x)

1tan5(x)tan3(x)cos2(x)tan3(x)

1tan5(x)sin2(x)cos(x)tan3(x)

cos(x)cos(x)tan5(x)sin3(x)cos(x)tan3(x)

cos5(x)sin5(x)cos4(x)sin3(x)sin3(x)cos2(x)

Aug 10, 2018

cos3θ+3sinθ3sinθsin3θ
12(1+cos2θ)1cos2θ1+cos2θ

Explanation:

Use

cos3A=4cos3A3cosAandsin3A=3sinA4sin3A.

cot3θcos2θtan2θ

=cos3θsin3θcos2θsin2θcos2θ

=cos3θ+3sinθ3sinθsin3θ

12(1+cos2θ)1cos2θ1+cos2θ