What is the vertex form of y=-x^2+4x+1?

1 Answer
Jun 14, 2018

See explanation.

Explanation:

The vertex form of a quadratic function is:

f(x)=a(x-p)^2+q

where

p=(-b)/(2a)

and

q=(-Delta)/(4a)

where

Delta=b^2-4ac

In the given example we have:

a=-1, b=4, c=1

So:

p=(-4)/(2*(-1))=2

Delta=4^2-4*(-1)*1=16+4=20

q=(-20)/(-4)=5

Finally the vertex form is:

f(x)=-(x-2)^2+5