How do you solve e^(2x)-(4e^x)+3=0e2x(4ex)+3=0?

2 Answers
Jun 20, 2018

x=0 and x=ln(3)x=0andx=ln(3)

Explanation:

Let u=e^xu=ex. Then the equation will become u^2-4u + 3=0u24u+3=0.

This equation can be solved by factoring

(u -3)(u-1) =0(u3)(u1)=0
#u = 3 or 1

Now we see that

e^x = 3 and e^x = 1ex=3andex=1
x = ln3 and x= 0x=ln3andx=0

Hopefully this helps!

Jun 20, 2018

x = 0 or ln3 approx 1.09861x=0orln31.09861

Explanation:

e^(2x)-4e^x+3=0e2x4ex+3=0

Let phi = e^x -> x=lnphiϕ=exx=lnϕ

:. phi^2 - 4phi +3=0

(phi-3)(phi-1)=0

Hence, phi = 1 or 3

phi =1 -> x=ln1 =0

phi =3 -> x= ln3 approx 1.09861