How do you solve Log(x-9) = 3-Log(100x) ?

1 Answer
Jul 3, 2018

color(blue)(x=10)

Explanation:

log(x-9)=3-log(100x)

By the laws of logarithms:

log(ab)=log(a)+log(b)color(white)(888)[1]

log(100x)=log(100)+log(x)

Assuming these are base 10 logarithms:

log(100)+log(x)=2+log(x)

We now have:

log(x-9)=3-2-log(x)

log(x-9)=1-log(x)

Using [1]

log(x-9)+log(x)=1

log(x(x-9))=1

log(x^2-9x)=1

10^(log(x^2-9x))=10^(1)

x^2-9x=10

x^2-9x-10=0

Factor:

(x+1)(x-10)=0=>x=-1 and x=10

Checking solutions.

x=-1

log((-1)-9)=3-log(100(-1))

log(-10)=3-log(-100)

Logarithms are only defined for real numbers if for:

log(x)

x>0

Therefore -1 is not a solution.

For x=10

log(10-9)=3-log(100(10))

log(1)=3-log(1000)

0=3-3

0=0

So x=10 is the only solution.