How do you solve log_2x+log_2(x+2)=log_2(x+6)log2x+log2(x+2)=log2(x+6)?

1 Answer
Jul 12, 2018

color(blue)(x=2)x=2

Explanation:

By the laws of logarithms:

log(a)+log(b)=log(ab)log(a)+log(b)=log(ab)

:.

log_2(x)+log_2(x+2)=log_2(x^2+2x)

log_2(x^2+2x)=log_2(x+6)

log_a(b)=log_a(c)=>b=c

:.

x^2+2x=x+6

x^2+x-6=0

Factor:

(x-2)(x+3)=0=>x=2 and x=-3

Checking with original equation, we find:

log_2(-3)

For real numbers log(a), a>0

So this is undefined.

Therefore only x=2 is a solution.