How do you find the derivative of y=( (2x^3)*(e^(sinx))*(2^(cosx)) ) / (tanx-3^x)y=(2x3)(esinx)(2cosx)tanx3x?

1 Answer
Jul 16, 2018

y'=(u'v-uv')/v^2 where u'=6x^2e^sin(x)2^cos(x)+2x^3e^sin(x)cos(x)2^cos(x)+2^cos(x)ln(2)(-sin(x))
v=tan(x)-3^x
v'=1+tan^2(x)-3^xln(3)

Explanation:

We Need the rule

(uvw)'=u'vw+uv'w+uvw'

(u/v)'=(u'v-uv')/v^2

u'=6x^2e^sin(x)2^cos(x)+2x^3e^sin(x)cos(x)2^cos(x)+2^cos(x)ln(2)*(-sin(x))

v'=1+tan^2(x)-3^xln(3)
Note that

(tan(x))'=1+tan^2(x)