What is the derivative of f(t) = (lnt, -3t^3+5t ) f(t)=(lnt,3t3+5t)?

1 Answer
Jul 17, 2018

dy/dx=-9t^3+5tdydx=9t3+5t

Explanation:

We have

x(t)=ln(t)x(t)=ln(t)

y(t)=-3t^3+5ty(t)=3t3+5t
given.So we get

dx/dt=1/tdxdt=1t

dy/dt=-9t^2+5dydt=9t2+5

then

dy/dx=(dy/dt)/(dx/dt)=(-9t^2+5)/(1/t)=-9t^3+5tdydx=dydtdxdt=9t2+51t=9t3+5t