How do you find formula for the exponential function in the form of f(x)= Ca^x given f(0)=3 and f(1)=15?

3 Answers
Jul 22, 2018

#color(blue)(f(x)=3*5^x)#

Explanation:

We have:

#Ca^0=3#

#Ca^1=15#

#Ca^0=3=>C=3#

So:

#3a=15=>a=5#

This gives:

#f(x)=3*5^x#

Jul 22, 2018

#f(x)=3(5)^x#

Explanation:

#"substitute "(0,3)" into the equation"#

#Ca^0=3rArrC=3#

#"substitute "(1,15)" into the equation"#

#3a^1=15rArra=15/3=5#

#f(x)=3(5)^x#

Jul 22, 2018

# f(x)=3*5^x#.

Explanation:

Let, #f(x)=ca^x#.

#"Given that "f(0)=3 rArr ca^0=3 rArr c=3#.

#:. f(x)=ca^x=3a^x#.

#"Also "f(1)=15 rArr 3a^1=15 rArr a=5#.

#"Thus, "f(x)=ca^x, c=3, a=5#.

# rArr f(x)=3*5^x#.