
f(theta) =2 cot (theta/2) - csc (theta/4) - cos (theta/4)f(θ)=2cot(θ2)−csc(θ4)−cos(θ4)
color(brown)(cot (theta/2) = 1 / tan (theta/2) = pm sqrt((1 + cos theta) / (1 - cos theta))cot(θ2)=1tan(θ2)=±√1+cosθ1−cosθ
sin (theta/4) = pm sqrt(1 /2 (1 - sin (theta/2)))sin(θ4)=±√12(1−sin(θ2))
color(brown)(csc (theta/4) = 1 / sin (theta / 4) = pm 1 / (sqrt(1/2 (1 - pm sqrt(1/2 (1 - cos theta)))csc(θ4)=1sin(θ4)=±1√12(1−±√12(1−cosθ))
cos (theta/4) = pm sqrt(1 /2 (1 + cos (theta/2)))cos(θ4)=±√12(1+cos(θ2))
color(brown)(cos (theta / 4) = pm sqrt(1/2 (1 pm sqrt(1/2 (1 + cos theta)))cos(θ4)=±
⎷12(1±√12(1+cosθ))
color(indigo)(f(theta) = (2 * pm sqrt((1 + cos theta) / (1 - cos theta))) - pm 1 / (sqrt(1/2 (1 - pm sqrt(1/2 (1 - cos theta))))) - pm sqrt(1/2 (1 pm sqrt(1/2 (1 + cos theta)))f(θ)=(2⋅±√1+cosθ1−cosθ)−±1√12(1−±√12(1−cosθ))−±
⎷12(1±√12(1+cosθ))