What is the derivative of sec^-3(x)secโˆ’3(x)?

3 Answers
Jul 26, 2018

(dy)/(dx)=-3sinxcos^2xdydx=โˆ’3sinxcos2x

Explanation:

Here ,

y=sec^(-3)(x)=1/sec^3x=cos^3xy=secโˆ’3(x)=1sec3x=cos3x

"Using"color(blue)" Chain Rule :"Using Chain Rule :

(dy)/(dx)=3cos^2xd/(dx)(cosx)dydx=3cos2xddx(cosx)

:.(dy)/(dx)=3cos^2x(-sinx)=-3sinxcos^2x

1/3\cos^3(\sec^{-3}x)\cot (sec^{-3}x)

Explanation:

Given function:

y=\sec^{-3}(x)

x=\sec^3y

Now, differentiating above equation w.r.t. on both the sides by using chain rule as follows

d/dx(x)=d/dx(\sec^3y)

1=3\sec^2yd/dx(\sec y)

1=3\sec^2y(sec y\tan y)dy/dx

1=3\sec^3y\tan ydy/dx

dy/dx=1/3\cos^3y\cot y

dy/dx=1/3\cos^3(\sec^{-3}x)\cot (sec^{-3}x)

Jul 26, 2018

-3cos^2(x)sin(x)

Explanation:

We have sec(x)=(cos(x))^(-1) so (sec(x))^(-3)=cos(x)^3
so we get by the chain rule

(cos(x)^3)'=3cos(x)^2(-sin(x))=-3cos^2(x)sin(x)