How do you find the vertex and intercepts for f(x) = -7x^2 + 3x + 1f(x)=7x2+3x+1?

1 Answer
Jul 27, 2018

Vertex (3/14,37/28)(314,3728)
y-intercept (0,1)(0,1)

x-intercept ((sqrt37+3)/14,0); ((-sqrt37+3)/14, 0)(37+314,0);(37+314,0)

Explanation:

Give -

f(x) =-7x^2+3x+1f(x)=7x2+3x+1

y=-7x^2+3x+1y=7x2+3x+1

Vertex

x=(-b)/(2a)=(-3)/(2 xx -7)=(-3)/(-14)=3/14x=b2a=32×7=314=314

At x=3/14; y=-7(3/14)^2+3(3/14)+1x=314;y=7(314)2+3(314)+1

y=-7(9/196)+9/14+1=(-63+126+196)/196=259/196=37/28y=7(9196)+914+1=63+126+196196=259196=3728

(3/14,37/28)(314,3728)

y-intercept

At x=0; y=-7(0)+3(0)+1=1x=0;y=7(0)+3(0)+1=1

y-intercept (0,1)(0,1)

x-intercept

Aty=0; -7x^2+3x+1=0y=0;7x2+3x+1=0

-7x^2+3x=-17x2+3x=1

x^2-3/7x+9/196=-1/(-7)+9/196=(28+9)/196=37/196x237x+9196=17+9196=28+9196=37196

(x-3/14)^2=+-sqrt(37/196)=+-sqrt37/14(x314)2=±37196=±3714

x=sqrt37/14+3/14=(sqrt37+3)/14x=3714+314=37+314
x=-sqrt37/14+3/14=(-sqrt37+3)/14x=3714+314=37+314

x-intercept ((sqrt37+3)/14,0); ((-sqrt37+3)/14, 0)(37+314,0);(37+314,0)