What is the derivative of ( cos (x) ) / ( 2 + sin (x) )?

2 Answers

f'(x)=\frac{-2\sin x-1}{(2+\sin x)^2}

Explanation:

Given function:

f(x)=\frac{\cos x}{2+\sin x}

Differentiating above function w.r.t. x using quotient rule as follows

d/dxf(x)=d/dx(\frac{\cos x}{2+\sin x})

f'(x)=\frac{(2+\sin x)d/dx(\cos x)-\cos xd/dx(2+\sin x)}{(2+\sin x)^2}

=\frac{(2+\sin x)(-\sin x)-\cos x(\cos x)}{(2+\sin x)^2}

=\frac{-2\sin x-\sin^2x-\cos ^2x}{(2+\sin x)^2}

=\frac{-2\sin x-(\sin^2x+\cos ^2x)}{(2+\sin x)^2}

=\frac{-2\sin x-1}{(2+\sin x)^2}

Jul 27, 2018

-(2sinx+1)/(2+sinx)^2

Explanation:

We have a quotient here, so we can find the derivative using quotient rule which, if you forgot, is:

d/dx(g(x)/(h(x))) = (g'(x)*h(x) - h'(x)*g(x))/(h^2(x))

So let's apply it:

f(x)=cosx/(2+sinx)

f'(x)=\frac{(2+\sin x)d/dx(\cos x)-(\cos x)d/dx(2+\sin x)}{(2+\sin x)^2}

f'(x)=((2+sinx)(-sinx)-(cosx)(cosx))/((2+sinx)^2)

f'(x)=(-2sinx-sin^2x-cos^2x)/(2+sinx)^2

f'(x)=(-2sinx-(color(red)(sin^2x+cos^2x)))/(2+sinx)^2

To simplify this further, we can use the pythagorean identity:
color(red)(sin^2x+cos^2x=1

So:

f'(x)=(-2sinx-1)/(2+sinx)^2 or -(2sinx+1)/(2+sinx)^2