How do you take the derivative of tan^-1(x)tan1(x)?

2 Answers
Jul 30, 2018

d/(dx)(tan^-1x)=1/(1+x^2) ,x inRR

Explanation:

We know that ,

(f^-1)'(x)=1/(f'(f^-1(x))) ,f'(x)!=0

OR

(dy)/(dx)=1/((dx)/(dy))

Let ,

tan^-1x=arc tanx=y , where , y in(-pi/2,pi/2)

So , x=tany , where , x in RR

Diff. x=tany w.r.t. y

=>(dx)/(dy) =sec^2y=1+tan^2y

Subst. tany=x

(dx)/(dy)=1+x^2

So,

d/(dx)(arc tanx)=(dy)/(dx)=1/((dx)/(dy))=1/(1+x^2)

:. d/(dx)(tan^-1x)=1/(1+x^2) ,x inRR

Jul 30, 2018

The answer is =1/(1+x^2)

Explanation:

Let

y=tan^-1x

Then,

tany=x

Implicit differentiation yields

sec^2ydy/dx=1

dy/dx=1/(sec^2y)

But

1+tan^2y=sec^2y

sec^2y=1+x^2

Finally,

dy/dx=1/(1+x^2)