How do you find the indefinite integral of x2+2x+3x2+3x2+9x?

1 Answer
Aug 2, 2018

x2+2x+3x2+3x2+9xdx=14x+116ln(4x+9)23ln⎜ ⎜ ⎜ ⎜∣ ∣ ∣ ∣1(89x+1)21+189x+1∣ ∣ ∣ ∣⎟ ⎟ ⎟ ⎟

Explanation:

I=x2+2x+3x2+3x2+9xdx
=x2+2x+34x2+9xdx=144x2+8x+124x2+9xdx
=14(4x2+9x)+x+124x2+9xdx

=141dx+14x+124x2+9xdx

=14x+14x4x2+9xdx+14124x2+9xdx

=14x+11644x+9dx+341x2+94xdx

For the first integral, let X=4x+9
dX=4dx

So:

I=14x+1161XdX+341(x+98)28164dx

Now let x+98=98sec(θ)

dx=98sec(θ)tan(θ)dθ, and because sec(θ)21=tan(θ)2::

I=14x+116ln(X)+3498sec(θ)tan(θ)8164tan(θ)2dθ

=14x+116ln(X)+23sec(θ)tan(θ)dθ

=14x+116ln(X)+231cos(θ)sin(θ)cos(θ)dθ

=14x+116ln(X)+231sin(θ)dθ

We have 1sin(θ)dθ=ln(|cot(θ)+csc(θ)|), you can have the proof here.

I=14x+116ln(X)23ln(|cot(θ)+csc(θ)|)

=14x+116ln(4x+9)23ln(|cot(θ)+csc(θ)|)

Because θ=sec1(89x+1), cot(θ)=cos(θ)csc(θ), cos(sec1(x))=1x and csc(sec1(x))=1sin(sec1(x))=xx21
(here is a proof that sin(sec1(x))=x21x.),

I=14x+116ln(4x+9)23ln⎜ ⎜ ⎜ ⎜∣ ∣ ∣ ∣1(89x+1)21+189x+1∣ ∣ ∣ ∣⎟ ⎟ ⎟ ⎟

\0/ Here's our answer !