I=∫x2+2x+3x2+3x2+9xdx
=∫x2+2x+34x2+9xdx=14∫4x2+8x+124x2+9xdx
=14∫(4x2+9x)+x+124x2+9xdx
=14∫1dx+14∫x+124x2+9xdx
=14x+14∫x4x2+9xdx+14∫124x2+9xdx
=14x+116∫44x+9dx+34∫1x2+94xdx
For the first integral, let X=4x+9
dX=4dx
So:
I=14x+116∫1XdX+34∫1(x+98)2−8164dx
Now let x+98=98sec(θ)
dx=98sec(θ)tan(θ)dθ, and because sec(θ)2−1=tan(θ)2::
I=14x+116ln(X)+34∫98sec(θ)tan(θ)8164tan(θ)2dθ
=14x+116ln(X)+23∫sec(θ)tan(θ)dθ
=14x+116ln(X)+23∫1cos(θ)sin(θ)cos(θ)dθ
=14x+116ln(X)+23∫1sin(θ)dθ
We have ∫1sin(θ)dθ=−ln(|cot(θ)+csc(θ)|), you can have the proof here.
I=14x+116ln(X)−23ln(|cot(θ)+csc(θ)|)
=14x+116ln(4x+9)−23ln(|cot(θ)+csc(θ)|)
Because θ=sec−1(89x+1), cot(θ)=cos(θ)csc(θ), cos(sec−1(x))=1x and csc(sec−1(x))=1sin(sec−1(x))=x√x2−1
(here is a proof that sin(sec−1(x))=√x2−1x.),
I=14x+116ln(4x+9)−23ln⎛⎜
⎜
⎜
⎜⎝∣∣
∣
∣
∣∣1√(89x+1)2−1+189x+1∣∣
∣
∣
∣∣⎞⎟
⎟
⎟
⎟⎠
\0/ Here's our answer !