A (9,3), B(6,9), C(2,4)A(9,3),B(6,9),C(2,4)

Slope of bar (AB) = m_(AB) = (y_B - y_A) / (x_B - x_A) = (9-3)/ (6-9) = -2¯¯¯¯¯¯AB=mAB=yB−yAxB−xA=9−36−9=−2
Slope of bar(CF) = m_(CF) = - 1/ m(AB) = -1 / -2 = 1/2¯¯¯¯¯¯CF=mCF=−1m(AB)=−1−2=12
Equation of bar(CF) ¯¯¯¯¯¯CF is y - 4 = 1/2 (x - 2)y−4=12(x−2)
2y - x = 72y−x=7 Eqn (1)
Slope of bar (AC) = m_(AC) = (y_C - y_A) / (x_C - x_A) = (4-3)/ (2-9) = -1/7¯¯¯¯¯¯AC=mAC=yC−yAxC−xA=4−32−9=−17
Slope of bar(BE) = m_(BE) = - 1/ m(AC) = -1 / (-1/7) = 7¯¯¯¯¯¯BE=mBE=−1m(AC)=−1−17=7
Equation of bar(BE) ¯¯¯¯¯¯BE is y - 9 = 7 (x - 6)y−9=7(x−6)
7x - y = 337x−y=33 Eqn (2)
Solving Eqns (1) and (2), we get the ortho-centre coordinates O(x,y)O(x,y)
cancel(2y) - x + 14x - cancel(2y) = 7 + 66
x = 73/13
y = 164/26 = 82/13