What is the orthocenter of a triangle with corners at (9 ,3 )(9,3), (6 ,9 )(6,9), and (2 ,4 )#?

1 Answer
Aug 3, 2018

color(maroon)("ortho-centre coordinates " O (73/13, 82/13)ortho-centre coordinates O(7313,8213)

Explanation:

A (9,3), B(6,9), C(2,4)A(9,3),B(6,9),C(2,4)

![https://www.quora.com/What-is-the-orthocentre-of-a-triangle-when-the-vertices-are-x1-y1-x2-y2-x3-y3](useruploads.socratic.org)

Slope of bar (AB) = m_(AB) = (y_B - y_A) / (x_B - x_A) = (9-3)/ (6-9) = -2¯¯¯¯¯¯AB=mAB=yByAxBxA=9369=2

Slope of bar(CF) = m_(CF) = - 1/ m(AB) = -1 / -2 = 1/2¯¯¯¯¯¯CF=mCF=1m(AB)=12=12

Equation of bar(CF) ¯¯¯¯¯¯CF is y - 4 = 1/2 (x - 2)y4=12(x2)

2y - x = 72yx=7 Eqn (1)

Slope of bar (AC) = m_(AC) = (y_C - y_A) / (x_C - x_A) = (4-3)/ (2-9) = -1/7¯¯¯¯¯¯AC=mAC=yCyAxCxA=4329=17

Slope of bar(BE) = m_(BE) = - 1/ m(AC) = -1 / (-1/7) = 7¯¯¯¯¯¯BE=mBE=1m(AC)=117=7

Equation of bar(BE) ¯¯¯¯¯¯BE is y - 9 = 7 (x - 6)y9=7(x6)

7x - y = 337xy=33 Eqn (2)

Solving Eqns (1) and (2), we get the ortho-centre coordinates O(x,y)O(x,y)

cancel(2y) - x + 14x - cancel(2y) = 7 + 66

x = 73/13

y = 164/26 = 82/13