How do you solve 3^(x+4)=2^(1-3x)3x+4=213x?

1 Answer
Aug 3, 2018

The solution is x=-1.165x=1.165

Explanation:

Solve by taking the logs on both sides of the equation

3^(x+4)=2^(1-3x)3x+4=213x

ln(3^(x+4))=ln(2^(1-3x))ln(3x+4)=ln(213x)

(x+4)ln3=(1-3x)ln2(x+4)ln3=(13x)ln2

xln3+4ln3=ln2-3xln2xln3+4ln3=ln23xln2

xln3+3xln2=ln2-4ln3xln3+3xln2=ln24ln3

x(ln3+3ln2)=ln2-4ln3x(ln3+3ln2)=ln24ln3

x=(ln2-4ln3)/(ln3+3ln2)x=ln24ln3ln3+3ln2

x=-3.701/3.178=-1.165x=3.7013.178=1.165