How do you find the critical numbers for g(t) = t sqrt(4-t) g(t)=t4t to determine the maximum and minimum?

1 Answer
Aug 3, 2018

PMAX(8/3;(16*sqrt(3))/9)PMAX(83;1639)

Explanation:

Given g(t)=tsqrt(4-t)g(t)=t4t
we get by the product and the chain rule

g'(t)=sqrt(4-t)+t*(1/2)(4-t)^(-1/2)*(-1)
which simplifies to

g'(t)=sqrt(4-t)-t/(2sqrt(4-t))
so we get

g*(t)=0 if

sqrt(4-t)=t/(2sqrt(4-t)) Multiplying with 2sqrt(4-t)

2(4-t)=t

so t=8/3

g''(t)=1/2(4-t)^(-1/2) * (-1)-1/2*(4-t)^(-1/2)+t/2(4-t)^(-3/2) * (-1/2)

g''(t)=t/sqrt(4-t)-t/(4(4-t)^(3/2))

g''(8/3)=-3sqrt(3)/4<0
so we get PMAX(8/3;16*sqrt(3)/9)