How do you use a half-angle formula to find the exact value of cos22.5cos22.5?

2 Answers
Aug 10, 2018

color(maroon)(cos 22.5^@ = + sqrt((sqrt2 -1)/(2 sqrt2)) ~~ + 0.3827cos22.5=+2122+0.3827

Explanation:

![www2.clarku.edu)

cos (theta/2) = +- sqrt((1-cos theta) / 2)cos(θ2)=±1cosθ2

Let hat (theta/2) = 22.5^@ˆθ2=22.5

hat theta = 2 * 22.5 = 45 ^@ˆθ=222.5=45

cos (theta/2) = cos 22.5^@ = + sqrt((1 - cos 45) / 2)#

We know cos 45 = 1 / sqrt2cos45=12

:. color(maroon)(cos 22.5^@ = + sqrt((1 - 1/sqrt2)/2) = + sqrt((sqrt2 -1)/(2 sqrt2)) ~~ + 0.3827

Aug 10, 2018

cos22.5^@=1/2(sqrt(2+sqrt2))

Explanation:

"using the "color(blue)"half-angle formula for cos"

•color(white)(x)cos(x/2)=+-sqrt((1+cosx)/2)

cos22.5^@=+sqrt((1+cos45^@)/2)

color(white)(xxxxxx)=sqrt((1+sqrt2/2)/2)

color(white)(xxxxxx)=sqrt((2+sqrt2)/4)

color(white)(xxxxxx)=1/2(sqrt(2+sqrt2))