How do I graph the hyperbola with the equation 4x^2−y^2+4y−20=0?4x2y2+4y20=0??

1 Answer
Aug 14, 2018

Please see the explanation below

Explanation:

You need the center, the vertices and the asymptotes.

The equation is

4x^2-y^2+4y-20=04x2y2+4y20=0

Completing the square

4x^2-(y^2-4y+4)=20-4=164x2(y24y+4)=204=16

Dividing by 1616

4/16x^2-(y-2)^2/16=1416x2(y2)216=1

(x)^2/4-(y-2)^2/16=1(x)24(y2)216=1

Comparing this to the general equation of a hyperbola

(x-h)^2/a^2-(y-k)^2/b^2=1(xh)2a2(yk)2b2=1

The center is C=(h,k)=(0,2)C=(h,k)=(0,2)

The vertices are

A=(h+a,k)=(0+2,2)=(2,2)A=(h+a,k)=(0+2,2)=(2,2)

and

A'=(h-a,k)=(0-2,2)=(-2,2)

And the asymptotes are

(y-2)^2/16=(x)^2/4

y-2=+-(2x)

y-2=2x and y-2=-2x

Now, you can plot the graph

graph{(4x^2-y^2+4y-20)(y-2-2x)(y-2+2x)=0 [-15.77, 16.27, -5.8, 10.2]}