How do you find the derivative of y = secx/(1 + tanx)y=secx1+tanx?

1 Answer
Dec 1, 2016

dy/dx = (sinx - cosx)/(sinx + cosx)^2dydx=sinxcosx(sinx+cosx)2

Explanation:

First of all, I'm assuming the function is y = secx/(1 + tanx)y=secx1+tanx? Call your function f(x)f(x).

f(x) = secx/(1 + tanx)f(x)=secx1+tanx

f(x) = (1/cosx)/(1 + sinx/cosx)f(x)=1cosx1+sinxcosx

f(x) = (1/cosx)/((cosx + sinx)/cosx)f(x)=1cosxcosx+sinxcosx

f(x) = 1/cosx xx cosx/(cosx + sinx)f(x)=1cosx×cosxcosx+sinx

f(x) = 1/(cosx+ sinx)f(x)=1cosx+sinx

f(x) = (cosx + sinx)^-1f(x)=(cosx+sinx)1

We let y = u^-1y=u1 and u = cosx + sinxu=cosx+sinx. Then dy/(du) = -1u^(-2)dydu=1u2 and (du)/dx = -sinx + cosxdudx=sinx+cosx.

The chain rule states that color(red)(dy/dx = dy/(du) xx (du)/dxdydx=dydu×dudx.

dy/dx = -1/u^2 xx -sinx + cosxdydx=1u2×sinx+cosx

dy/dx = (sinx - cosx)/(sinx + cosx)^2dydx=sinxcosx(sinx+cosx)2

Hopefully this helps!