Question #8f777 Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Konstantinos Michailidis May 28, 2016 Set #u=sqrtx>0# hence #du=1/(2sqrtx)dx=>dx=2udu# Hence the integral becomes #int sqrtx/(sqrtx-3)dx=int 2*u^2/(u-3)du# Analyze #2u^2/(u-3)# in partial fractions we get #int 2u^2/(u-3)du=int (2u+18/(u-3)+6)du= u^2+18ln(u-3)+6u+c=x+18*ln(sqrtx-3)+6sqrtx+c# Finally #int sqrtx/(sqrtx-3)dx=x+18*ln(sqrtx-3)+6sqrtx+c# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1368 views around the world You can reuse this answer Creative Commons License