Question #e1771

1 Answer
Feb 13, 2017

tan 165 = sqrt3 - 2tan165=32

Explanation:

Call tan 165 = tan t --> tan 2t = tan 330
Trig table and unit circle give:.
tan 330 = tan (-30 + 360) = tan (-30) = - tan 30 = - 1/sqrt3tan330=tan(30+360)=tan(30)=tan30=13
Use trig identity:
tan 2t = (2tan t)/(1 - tan^2 t)tan2t=2tant1tan2t
In this case :
-1/sqrt3 = (2tan t)/(1 - tan^2 t)13=2tant1tan2t
tan^2 t - 1 = 2sqrt3tan ttan2t1=23tant
tan^2 t - 2sqrt3tan t - 1 = 0tan2t23tant1=0
Solve this quadratic equation for tan t using improved quadratic formula (Socratic Search):
D = d^2 = b^2 - 4ac = 12 + 4 = 16D=d2=b24ac=12+4=16 --> d = +- 4d=±4.
There are 2 real roots:
#tan t = - b/(2a) +- d/(2a) = sqrt3 +- 2
tan t = sqrt3 + 2, and tan t = sqrt3 - 2
Since (165) is in Quadrant II, tan 165 is negative, then take the negative value.
tan (165) = tan t = sqrt3 - 2