Question #c86cf

2 Answers
Jun 8, 2016

I'll solve 59ii.

You will need the following identities to solve this equation:

sin2theta = 2sinthetacostheta

cos2theta = 1 - 2sin^2theta

Explanation:

(2sinthetacostheta)/(2sintheta) - costheta(1 - 2sin^2theta)= costheta

costheta - costheta - costheta(1 - 2sin^2theta) = 0

-costheta = 0 and sin^2theta = 1/2

-costheta = 0 and sintheta =+- 1/sqrt(2)

theta = 90^@, 270^@, 45^@, 135^@, 225^@ and 315^@

Hopefully this helps!

Jun 8, 2016

Item 60. See demonstration.

Explanation:

Item 60

tan(30^@)=h/(bar (BC))
tan(45^@)=h/(bar(CA))
(bar (BC))^2+(bar(CA))^2=(2r)^2 (mind that angle C = 90^@)

then

(h/(tan(30^@)))^2+(h/(tan(45^@)))^2 = h^2(cot(30^@)^2+cot(45^@)^2)= 4 r^2

but

(cot(30^@)^2+cot(45^@)^2) = 4

then

r = h