Question #c86cf

2 Answers
Jun 8, 2016

I'll solve #59ii#.

You will need the following identities to solve this equation:

#sin2theta = 2sinthetacostheta#

#cos2theta = 1 - 2sin^2theta#

Explanation:

#(2sinthetacostheta)/(2sintheta) - costheta(1 - 2sin^2theta)= costheta#

#costheta - costheta - costheta(1 - 2sin^2theta) = 0#

#-costheta = 0 and sin^2theta = 1/2#

#-costheta = 0 and sintheta =+- 1/sqrt(2)#

#theta = 90^@, 270^@, 45^@, 135^@, 225^@ and 315^@ #

Hopefully this helps!

Jun 8, 2016

Item 60. See demonstration.

Explanation:

Item 60

#tan(30^@)=h/(bar (BC))#
#tan(45^@)=h/(bar(CA))#
#(bar (BC))^2+(bar(CA))^2=(2r)^2# (mind that #angle C = 90^@#)

then

#(h/(tan(30^@)))^2+(h/(tan(45^@)))^2 = h^2(cot(30^@)^2+cot(45^@)^2)= 4 r^2#

but

#(cot(30^@)^2+cot(45^@)^2) = 4#

then

#r = h#