Question #aa795

1 Answer
Sep 17, 2016

#x=+-pi/2#. But these are outside the open interval #(-pi/2, pi/2)). So, within here, there is no point of inflexion.

Explanation:

Let #y = e^x sin x#.

#y'=(s^x)'sin x+e^x(sin x)'#

#=e^x(sin x + e^x cos x#

#= e^x(sin x + cos x )#

#y''=(e^x)'(sin x + cos x )+e^x(sin x +cos x)'#

#=e^x(sin x + cos x + cos x - sin x)#

#=2e^x cos x=0, when cos x =0 to x=+-pi/2#

#y'''=2((e^x)'cos x+e^x(sin x)'#

#=2e^x(cos x-sin x)#

At #x=+-pi/2#, y'''is not 0##

Thus,# x = +-pi/2# are points of inflection. But these ar outside #(-pi/2, pi/2)#.

Note that y'=0 is not a necessary condition.

Here, y' is not 0 at #x = +-pi/2#.