Question #aa795

1 Answer
Sep 17, 2016

x=+-pi/2x=±π2. But these are outside the open interval #(-pi/2, pi/2)). So, within here, there is no point of inflexion.

Explanation:

Let y = e^x sin xy=exsinx.

y'=(s^x)'sin x+e^x(sin x)'

=e^x(sin x + e^x cos x

= e^x(sin x + cos x )

y''=(e^x)'(sin x + cos x )+e^x(sin x +cos x)'

=e^x(sin x + cos x + cos x - sin x)

=2e^x cos x=0, when cos x =0 to x=+-pi/2

y'''=2((e^x)'cos x+e^x(sin x)'

=2e^x(cos x-sin x)

At x=+-pi/2, y'''is not 0

Thus, x = +-pi/2 are points of inflection. But these ar outside (-pi/2, pi/2).

Note that y'=0 is not a necessary condition.

Here, y' is not 0 at x = +-pi/2.