Question #89a1e

1 Answer
Oct 27, 2016

dydx=6x2sin(x3)cos(x3)

Explanation:

ddxcos2(x3)

We have to apply chain rule, where u=cos(x3)

dydu=dduu2=2u=2cos(x3)

dudx=ddxcos(x3)=3x2sin(x3)

dydx=dydududx=2cos(x3)3x2sin(x3)

=6x2sin(x3)cos(x3)