We have,
tan^2(theta/2)=sin^2(theta/2)/cos^2(theta/2)xx2/2,tan2(θ2)=sin2(θ2)cos2(θ2)×22,
={2sin^2(theta/2)}/{2cos^2(theta/2)},=2sin2(θ2)2cos2(θ2),
=(1-costheta)/(1+costheta),=1−cosθ1+cosθ,
:. tan(theta/2)=pmsqrt{(1-costheta)/(1+costheta)}.
Letting, theta=pi/4," so that, "theta/2=pi/8, we have,
tan(pi/8)=pmsqrt{(1-cos(pi/4))/(1+cos(pi/4))},
=pmsqrt{(1-1/sqrt2)/(1+1/sqrt2)},
=pmsqrt[{(sqrt2-1)/(sqrt2+1)}xx{(sqrt2-1)/(sqrt2-1)}],
=pmsqrt[{(sqrt2-1)^2)/(2-1)],
:. tan(pi/8)=pm(sqrt2-1).
As (pi/8)" lies in the "1^(st) Quadrant, it is +ve.
rArr tan(pi/8)=+(sqrt2-1).
Enjoy Maths.!