Question #90557

1 Answer
Aug 22, 2017

tan(pi/8)=(sqrt2-1).tan(π8)=(21).

Explanation:

We have,

tan^2(theta/2)=sin^2(theta/2)/cos^2(theta/2)xx2/2,tan2(θ2)=sin2(θ2)cos2(θ2)×22,

={2sin^2(theta/2)}/{2cos^2(theta/2)},=2sin2(θ2)2cos2(θ2),

=(1-costheta)/(1+costheta),=1cosθ1+cosθ,

:. tan(theta/2)=pmsqrt{(1-costheta)/(1+costheta)}.

Letting, theta=pi/4," so that, "theta/2=pi/8, we have,

tan(pi/8)=pmsqrt{(1-cos(pi/4))/(1+cos(pi/4))},

=pmsqrt{(1-1/sqrt2)/(1+1/sqrt2)},

=pmsqrt[{(sqrt2-1)/(sqrt2+1)}xx{(sqrt2-1)/(sqrt2-1)}],

=pmsqrt[{(sqrt2-1)^2)/(2-1)],

:. tan(pi/8)=pm(sqrt2-1).

As (pi/8)" lies in the "1^(st) Quadrant, it is +ve.

rArr tan(pi/8)=+(sqrt2-1).

Enjoy Maths.!