Question #6b55e

2 Answers
Aug 23, 2017

I will assume that we want to find dy/dx

Explanation:

y = ln(tan^2x)

Use d/dx(lnu) = 1/u (du)/dx (chain rule)

And the chain rule again

d/dx(tan^2u) = d/dx((tanx)^2) = 2tanx d/dx(tanx) = 2tanxsec^2x

So,

dy/dx = 1/(tan^2x) d/dx(tan^2x)

= cot^2x (2tanxsec^2x)

= 2cotxsec^2x

= 2cscxsecx

Aug 24, 2017

dy/dx=2cscxsecx

Explanation:

We can also simplify the function using the following logarithm rules:

  • log(a^b)=blog(a)
  • log(a/b)=log(a)-log(b)

So:

y=ln(tan^2x)=2ln(tanx)=2ln(sinx/cosx)=2ln(sinx)-2ln(cosx)

Taking the derivative, we need to remember that d/dxlnx=1/x. We also need to use the chain rule:

dy/dx=2/sinx(d/dxsinx)-2/cosx(d/dxcosx)

dy/dx=(2cosx)/sinx+(2sinx)/cosx=(2(cos^2x+sin^2x))/(sinxcosx)

Since sin^2x+cos^2x=1:

dy/dx=2cscxsecx