Question #7ce2b

1 Answer
Dec 1, 2016

This expression simplifies to #csctheta#.

Explanation:

We put on a common denominator.

#=>(costheta(1 + costheta))/(sintheta(1 + costheta)) + (sintheta(sin theta))/(sintheta(1 + costheta))#

#=>(costheta + cos^2theta + sin^2theta)/(sin theta(1 + costheta))#

We know that #cos^2x + sin^2x = 1#.

#=>(1 + costheta)/(sintheta(1 + costheta)#

#=>1/sintheta#

By the reciprocal identities, #1/sinx = cscx#.

#=>csctheta#

Hopefully this helps!