Question #53041

1 Answer
Oct 17, 2017

dydx=1x211x2 or dydx=1xx21

Explanation:

We know the derivative of (sin1x) is (11x2)

Therefore,

y=sin1(1x)

We will differentiate both sides using the chain rule.

ddxy=ddx(sin1(1x))

dydx=11(1x)2ddx(1x)

dydx=111x2ddx(x1)

dydx111x2(1x2)

dydx=1x211x2