How do you find a formula for n∑r=0r2r ?
2 Answers
Jan 24, 2017
Explanation:
Note that:
(n+1)2n+1+n∑r=0r2r=n+1∑r=0r2r
(n+1)2n+1+n∑r=0r2r=n+1∑r=1r2r
(n+1)2n+1+n∑r=0r2r=n+1∑r=12r+n+1∑r=1(r−1)2r
(n+1)2n+1+n∑r=0r2r=(2n+2−2)+2n+1∑r=1(r−1)2r−1
(n+1)2n+1+n∑r=0r2r=(2n+2−2)+2n∑r=0r2r
Subtract
n∑r=0r2r=(n+1)2n+1−2n+2+2
n∑r=0r2r=(n−1)2n+1+2
Jan 25, 2017
Explanation:
now making