#{(1+xsqrt(a/(bc)))/(1-xsqrt(a/(bc)))}^(1/a)=(y/(y+1))^(2/b)#
Observe that, taking #a^(th)# power of both sides, the power of L.H.S. will become #(1/a)(a)=1#, & that of the R.H.S., #(2/b)(a)=(2a)/b#.
#{(1+xsqrt(a/(bc)))/(1-xsqrt(a/(bc)))}=(y/(y+1))^((2a)/b)=y^((2a)/b)/(y+1)^((2a)/b)#
Now, we use componendo-dividendo and get,
#{(1+xsqrt(a/(bc)))+(1-xsqrt(a/(bc)))}/{(1+xsqrt(a/(bc)))-(1-xsqrt(a/(bc)))}={y^((2a)/b)+(y+1)^((2a)/b)}/{y^((2a)/b)-(y+1)^((2a)/b)}#
#:. 1/{xsqrt(a/(bc))}={y^((2a)/b)+(y+1)^((2a)/b)}/{y^((2a)/b)-(y+1)^((2a)/b)}#
#:.{xsqrt(a/(bc))}={y^((2a)/b)-(y+1)^((2a)/b)}/{y^((2a)/b)+(y+1)^((2a)/b)}#
#:. x=sqrt((bc)/a)[{y^((2a)/b)-(y+1)^((2a)/b)}/{y^((2a)/b)+(y+1)^((2a)/b)}]#
Enjoy maths.!