What is the derivative of y = 1/(secx- tanx)y=1secxtanx?

1 Answer
Feb 1, 2017

y' = 1/(1 - sinx)

Explanation:

Try to write in sine and cosine. Use the identities secx = 1/cosx and tanx = sinx/cosx.

y = 1/(1/cosx - sinx/cosx)

y = 1/((1 - sinx)/cosx)

y = cosx/(1 - sinx)

Differentiate this using the quotient rule.

y' = (-sinx(1 - sinx) - cosx(-cosx))/(1- sinx)^2

y' = (-sinx + sin^2x + cos^2x)/(1 - sinx)^2

Use sin^2x + cos^2x = 1:

y' = (1 - sinx)/((1 -sinx)(1 - sinx))

y' = 1/(1 - sinx)

Hopefully this helps!