What is the derivative of d/dx (x+cosx ÷ tanx )?
1 Answer
d/dx (x+cosx ÷ tanx ) = 1 - cosx - cotxcscx
Explanation:
d/dx (x+cosx ÷ tanx ) = d/dx (x+cosx/tanx )
" "= d/dx (x)+d/dx(cosx/tanx)
" "= 1 + { (tanx)(-sinx) - (cosx)(sec^2x) }/ (tanx)^2
" "= 1 - (tanx)(sinx)/tan^2x - (cosx)(sec^2x)/(tanx)^2
" "= 1 - (sinx)*cosx/sinx - (cosx)(1/cos^2x)*cos^2x/sin^2x
" "= 1 - cosx - (cosx)/sin^2x
" "= 1 - cosx - cotxcscx