Question #17729

3 Answers
Feb 11, 2017

See the proof below

Explanation:

We need

#sin2alpha=2sinalphacosalpha#

#cos2alpha=1-2sin^2alpha=2cos^2alpha-1#

Therefore,

#(sin2alpha*cosalpha)/((1+cos2alpha)(1+cosalpha))#

#=(2sinalpha*cosalpha*cosalpha)/((1+1-2sin^2alpha)(1+cosalpha))#

#=(2sinalpha(1-sin^2alpha))/(2(1-sin^2alpha)(1+cosalpha))#

#=sinalpha/(1+cosalpha)#

#=(2sin(alpha/2)cos(alpha/2))/(1+2cos^2alpha-1)#

#=(2sin(alpha/2)cos(alpha/2))/(2cos^2(alpha/2))#

#=sin(alpha/2)/cos(alpha/2)#

#=tan(alpha/2)#

#QED#

Feb 11, 2017

Proved R.H.S. = L.H.S.

Explanation:

We know #sin 2a = 2 sina cosa and cos2a = 1 - 2 sin^2a# and

also cosa = 2cos^(a/2) -1 and sina = 2 sin(a/2)cos(a/2).

Now put all values in the problem,

#(sin 2a)/(1+cos 2a). (cos a)/(1 + cos a)#

= #(2 sin a cos a)/[1+1 - 2sin^2a] . cosa/[1+cosa]#

= #[2sina cos^2a]/[(2-2sin^2a)(1+cosa)]#

= #[2sinacos^2a]/[2(1-sin^2a)(1+cosa)#

= #[sinacos^2a]/[cos^2a.(1+cosa)]#

= #sina/[1+cosa]#

= #[2sin(a/2)cos(a/2)]/[1+2cos^2(a/2)-1]#

= #[2sin(a/2)cos(a/2)]/[2cos^2(a/2)]#

= #sin(a/2)/cos(a/2)#

= #tan(a/2)#

Feb 11, 2017

Change only one side and stop, when it looks like the other side.

Explanation:

I will change only the left side.

Multiply the numerator and the denominator:

#(sin(2a)cos(a))/(1 + cos(2a) + cos(a) + cos(2a)cos(a)) = tan(a/2)#

Substitute #cos^2(a) - sin^2(a)# for #cos(2a)#:

#(sin(2a)cos(a))/(1 + cos^2(a) - sin^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)#

Substitute #2sin(a)cos(a)# for #sin(2a)#

#((2sin(a)cos(a))cos(a))/(1 + cos^2(a) - sin^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)#

Substitute #cos^2(a)# for #1 - sin^2(a)#:

#((2sin(a)cos(a))cos(a))/(cos^2(a) + cos^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)#

The numerator and denominator have a factor of #cos(a)# in common:

#(2sin(a)cos(a))/(cos(a) + cos(a) + 1 + cos^2(a) - sin^2(a)) = tan(a/2)#

Substitute #cos^2(a)# for #1 - sin^2(a)#:

#(2sin(a)cos(a))/(cos(a) + cos(a) + cos^2(a) + cos^2(a)) = tan(a/2)#

Combine like terms in the denominator:

#(2sin(a)cos(a))/(2cos(a) + 2cos^2(a)) = tan(a/2)#

There is a common factor of #2cos(a)# in the numerator and denominator:

#sin(a)/(1 + cos(a)) = tan(a/2)#

The above is a well know identity; you can substitute #tan(a/2)# into left side, if you like. Q.E.D.