I will change only the left side.
Multiply the numerator and the denominator:
(sin(2a)cos(a))/(1 + cos(2a) + cos(a) + cos(2a)cos(a)) = tan(a/2)sin(2a)cos(a)1+cos(2a)+cos(a)+cos(2a)cos(a)=tan(a2)
Substitute cos^2(a) - sin^2(a)cos2(a)−sin2(a) for cos(2a)cos(2a):
(sin(2a)cos(a))/(1 + cos^2(a) - sin^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)sin(2a)cos(a)1+cos2(a)−sin2(a)+cos(a)+(cos2(a)−sin2(a))cos(a)=tan(a2)
Substitute 2sin(a)cos(a)2sin(a)cos(a) for sin(2a)sin(2a)
((2sin(a)cos(a))cos(a))/(1 + cos^2(a) - sin^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)(2sin(a)cos(a))cos(a)1+cos2(a)−sin2(a)+cos(a)+(cos2(a)−sin2(a))cos(a)=tan(a2)
Substitute cos^2(a)cos2(a) for 1 - sin^2(a)1−sin2(a):
((2sin(a)cos(a))cos(a))/(cos^2(a) + cos^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)(2sin(a)cos(a))cos(a)cos2(a)+cos2(a)+cos(a)+(cos2(a)−sin2(a))cos(a)=tan(a2)
The numerator and denominator have a factor of cos(a)cos(a) in common:
(2sin(a)cos(a))/(cos(a) + cos(a) + 1 + cos^2(a) - sin^2(a)) = tan(a/2)2sin(a)cos(a)cos(a)+cos(a)+1+cos2(a)−sin2(a)=tan(a2)
Substitute cos^2(a)cos2(a) for 1 - sin^2(a)1−sin2(a):
(2sin(a)cos(a))/(cos(a) + cos(a) + cos^2(a) + cos^2(a)) = tan(a/2)2sin(a)cos(a)cos(a)+cos(a)+cos2(a)+cos2(a)=tan(a2)
Combine like terms in the denominator:
(2sin(a)cos(a))/(2cos(a) + 2cos^2(a)) = tan(a/2)2sin(a)cos(a)2cos(a)+2cos2(a)=tan(a2)
There is a common factor of 2cos(a)2cos(a) in the numerator and denominator:
sin(a)/(1 + cos(a)) = tan(a/2)sin(a)1+cos(a)=tan(a2)
The above is a well know identity; you can substitute tan(a/2)tan(a2) into left side, if you like. Q.E.D.