Question #17729

3 Answers
Feb 11, 2017

See the proof below

Explanation:

We need

sin2alpha=2sinalphacosalphasin2α=2sinαcosα

cos2alpha=1-2sin^2alpha=2cos^2alpha-1cos2α=12sin2α=2cos2α1

Therefore,

(sin2alpha*cosalpha)/((1+cos2alpha)(1+cosalpha))sin2αcosα(1+cos2α)(1+cosα)

=(2sinalpha*cosalpha*cosalpha)/((1+1-2sin^2alpha)(1+cosalpha))=2sinαcosαcosα(1+12sin2α)(1+cosα)

=(2sinalpha(1-sin^2alpha))/(2(1-sin^2alpha)(1+cosalpha))=2sinα(1sin2α)2(1sin2α)(1+cosα)

=sinalpha/(1+cosalpha)=sinα1+cosα

=(2sin(alpha/2)cos(alpha/2))/(1+2cos^2alpha-1)=2sin(α2)cos(α2)1+2cos2α1

=(2sin(alpha/2)cos(alpha/2))/(2cos^2(alpha/2))=2sin(α2)cos(α2)2cos2(α2)

=sin(alpha/2)/cos(alpha/2)=sin(α2)cos(α2)

=tan(alpha/2)=tan(α2)

QEDQED

Feb 11, 2017

Proved R.H.S. = L.H.S.

Explanation:

We know sin 2a = 2 sina cosa and cos2a = 1 - 2 sin^2asin2a=2sinacosaandcos2a=12sin2a and

also cosa = 2cos^(a/2) -1 and sina = 2 sin(a/2)cos(a/2).

Now put all values in the problem,

(sin 2a)/(1+cos 2a). (cos a)/(1 + cos a)sin2a1+cos2a.cosa1+cosa

= (2 sin a cos a)/[1+1 - 2sin^2a] . cosa/[1+cosa]2sinacosa1+12sin2a.cosa1+cosa

= [2sina cos^2a]/[(2-2sin^2a)(1+cosa)]2sinacos2a(22sin2a)(1+cosa)

= [2sinacos^2a]/[2(1-sin^2a)(1+cosa)2sinacos2a2(1sin2a)(1+cosa)

= [sinacos^2a]/[cos^2a.(1+cosa)]sinacos2acos2a.(1+cosa)

= sina/[1+cosa]sina1+cosa

= [2sin(a/2)cos(a/2)]/[1+2cos^2(a/2)-1]2sin(a2)cos(a2)1+2cos2(a2)1

= [2sin(a/2)cos(a/2)]/[2cos^2(a/2)]2sin(a2)cos(a2)2cos2(a2)

= sin(a/2)/cos(a/2)sin(a2)cos(a2)

= tan(a/2)tan(a2)

Feb 11, 2017

Change only one side and stop, when it looks like the other side.

Explanation:

I will change only the left side.

Multiply the numerator and the denominator:

(sin(2a)cos(a))/(1 + cos(2a) + cos(a) + cos(2a)cos(a)) = tan(a/2)sin(2a)cos(a)1+cos(2a)+cos(a)+cos(2a)cos(a)=tan(a2)

Substitute cos^2(a) - sin^2(a)cos2(a)sin2(a) for cos(2a)cos(2a):

(sin(2a)cos(a))/(1 + cos^2(a) - sin^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)sin(2a)cos(a)1+cos2(a)sin2(a)+cos(a)+(cos2(a)sin2(a))cos(a)=tan(a2)

Substitute 2sin(a)cos(a)2sin(a)cos(a) for sin(2a)sin(2a)

((2sin(a)cos(a))cos(a))/(1 + cos^2(a) - sin^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)(2sin(a)cos(a))cos(a)1+cos2(a)sin2(a)+cos(a)+(cos2(a)sin2(a))cos(a)=tan(a2)

Substitute cos^2(a)cos2(a) for 1 - sin^2(a)1sin2(a):

((2sin(a)cos(a))cos(a))/(cos^2(a) + cos^2(a) + cos(a) + (cos^2(a) - sin^2(a))cos(a)) = tan(a/2)(2sin(a)cos(a))cos(a)cos2(a)+cos2(a)+cos(a)+(cos2(a)sin2(a))cos(a)=tan(a2)

The numerator and denominator have a factor of cos(a)cos(a) in common:

(2sin(a)cos(a))/(cos(a) + cos(a) + 1 + cos^2(a) - sin^2(a)) = tan(a/2)2sin(a)cos(a)cos(a)+cos(a)+1+cos2(a)sin2(a)=tan(a2)

Substitute cos^2(a)cos2(a) for 1 - sin^2(a)1sin2(a):

(2sin(a)cos(a))/(cos(a) + cos(a) + cos^2(a) + cos^2(a)) = tan(a/2)2sin(a)cos(a)cos(a)+cos(a)+cos2(a)+cos2(a)=tan(a2)

Combine like terms in the denominator:

(2sin(a)cos(a))/(2cos(a) + 2cos^2(a)) = tan(a/2)2sin(a)cos(a)2cos(a)+2cos2(a)=tan(a2)

There is a common factor of 2cos(a)2cos(a) in the numerator and denominator:

sin(a)/(1 + cos(a)) = tan(a/2)sin(a)1+cos(a)=tan(a2)

The above is a well know identity; you can substitute tan(a/2)tan(a2) into left side, if you like. Q.E.D.