Question #53ac5

1 Answer
Feb 27, 2017

The #n#-th derivative can be evaluated recursively as:

#d^n/(dx^n) f(x) = 2 sin(x+(npi)/2) - d^(n-2)/(dx^(n-2))f(x)#

with:

#f(x) = xcosx#

#f'(x) = sin(x+pi/2) -xsinx#

Explanation:

We can start from the first derivative:

#f'(x) = d/dx (xcosx) = d/dx(x) cosx + x d/dx(cosx) = cosx -xsinx#

Differentiating again:

#(1) f''(x) = -sinx -[d/dx(x) sinx +x d/dx(sinx)] = -2sinx -f(x)#

Now we know that:

#d^n/(dx^n) sinx = sin(x+(npi)/2)#

and in particular:

#d^2/(dx^2) sinx = -sinx#

so that we can write #(1)# as:

#d^2/(dx^2) f(x) = 2 d^2/(dx^2) sinx - f(x)#

and differentiating this equation we obtain a recursive formula for the derivatives of higher order:

#d^n/(dx^n) f(x) = 2 d^n/(dx^n) sinx - d^(n-2)/(dx^(n-2))f(x)#

or:

#d^n/(dx^n) f(x) = 2 sin(x+(npi)/2) - d^(n-2)/(dx^(n-2))f(x)#