We can start from the first derivative:
f'(x) = d/dx (xcosx) = d/dx(x) cosx + x d/dx(cosx) = cosx -xsinx
Differentiating again:
(1) f''(x) = -sinx -[d/dx(x) sinx +x d/dx(sinx)] = -2sinx -f(x)
Now we know that:
d^n/(dx^n) sinx = sin(x+(npi)/2)
and in particular:
d^2/(dx^2) sinx = -sinx
so that we can write (1) as:
d^2/(dx^2) f(x) = 2 d^2/(dx^2) sinx - f(x)
and differentiating this equation we obtain a recursive formula for the derivatives of higher order:
d^n/(dx^n) f(x) = 2 d^n/(dx^n) sinx - d^(n-2)/(dx^(n-2))f(x)
or:
d^n/(dx^n) f(x) = 2 sin(x+(npi)/2) - d^(n-2)/(dx^(n-2))f(x)