Question #09e0a

1 Answer
Mar 1, 2017

dydx=4tan3(x)sec2(x)+5x4sec2(x5)

Explanation:

Use the chain rule on each term.

First term: y1=tan4(x)

Let u=tan(x), then y=u4,dydu=4u3,anddudx=sec2(x)

dy1dx=dydududx

dy1dx=4u3sec2(x)

dy1dx=4tan3(x)sec2(x)

Second term: y2=tan(x5)

Let u=x2, then y=tan(u),dydu=sec2(u),anddudx=5x4

dy2dx=dydududx

dy2dx=sec2(u)5x4

dy2dx=5x4sec2(x5)

Put both terms back into the expression:

dydx=dy1dx+dy2dx

dydx=4tan3(x)sec2(x)+5x4sec2(x5)