Question #aa415

1 Answer
Mar 3, 2017

#sqrt3/2#

Explanation:

enter image source here
Given #DeltaABE# is equilateral, #=> angleEAB=60^@#
As #BD# is diagonal of the square, #=> angleABD=45^@#
#=> angleAFB=180-(60+45)=75^@#
Draw a line #FG#, which is perpendicular to #AB#, as shown in the figure.
#=> angleAFG=30^@, =>angleBFG=45^@#

Recall that #sin30=1/2, and sin60=sqrt3/2#
Let #AG=x => AF=2x, and FG=sqrt3x#
As #DeltaBGF# is isosceles, #=> FG=GB#
#=> AG+GB=x+sqrt3x=(1+sqrt3)x#
As #AG+GB=AB#
#=> (1+sqrt3)x=sqrt(1+sqrt3)#
#=> x=(sqrt(1+sqrt3))/(1+sqrt3)#

Area #ABF=1/2*FG*AB=1/2*sqrt3x*AB#
#=1/2*sqrt3*cancel(sqrt(1+sqrt3))/cancel(1+sqrt3)*cancelsqrt(1+sqrt3)#
#=sqrt3/2#