How much ammonium chloride do we need to add to a 20*mL20mL volume of NH_3(aq)NH3(aq) at 0.50*mol*L^-10.50molL1 concentration, to maintain a pH=9.0pH=9.0?

1 Answer
Mar 8, 2017

We need (i) approx. 270*mg270mg, and (ii) we need to use the buffer equation: pH=pK_a+log_10(([NH_4^+])/([NH_3]))pH=pKa+log10([NH+4][NH3]).

I do not think the given answer is kosher.

Explanation:

Now we know that pK_a+pK_b=14pKa+pKb=14 for an aqueous solution under standard conditions, K_b=2xx10^-5Kb=2×105, and thus pK_b=4.70pKb=4.70, and pK_a=9.30pKa=9.30

And we substitute the pK_apKa value back into the original equation, with the desired pHpH.

And thus,

9=9.30+log_10(([NH_4^+])/([NH_3]))9=9.30+log10([NH+4][NH3])

And thus -0.30=log_10(([NH_4^+])/([NH_3]))0.30=log10([NH+4][NH3])

10^(-0.3)=([NH_4^+])/([NH_3])100.3=[NH+4][NH3]

And we know that [NH_3]=0.50*mol*L^-1[NH3]=0.50molL1.

So [NH_4^+]=10^(-0.3)xx0.50*mol*L^-1=0.25*mol*L^-1[NH+4]=100.3×0.50molL1=0.25molL1

Now "concentration"concentration == ("Moles of solute")/("Volume of solution")Moles of soluteVolume of solution, but the volume of solution was SPECIFIED to be 20xx10^-3L20×103L.

So "moles of solute"=20xx10^-3cancelLxx0.25*mol*cancel(L^-1)

=5.01xx10^-3*mol of NH_4Cl; and this represents a mass of

5.01xx10^-3*molxx53.49*g*mol^-1=0.268*g.

So a final check,

[NH_4^+]=((0.268*g)/(53.49*g*mol^-1))/(20xx10^-3*L)=0.251*mol*L^-1.

[NH_3]=0.50*mol*L^-1.

Resubstituting into the buffer equation:

pH=pK_a+log_10(((0.251*mol*L^-1))/((0.50*mol*L^-1)))

=9.30+(-0.3)

=9.0 AS REQUIRED....................