Now we know that pK_a+pK_b=14pKa+pKb=14 for an aqueous solution under standard conditions, K_b=2xx10^-5Kb=2×10−5, and thus pK_b=4.70pKb=4.70, and pK_a=9.30pKa=9.30
And we substitute the pK_apKa value back into the original equation, with the desired pHpH.
And thus,
9=9.30+log_10(([NH_4^+])/([NH_3]))9=9.30+log10([NH+4][NH3])
And thus -0.30=log_10(([NH_4^+])/([NH_3]))−0.30=log10([NH+4][NH3])
10^(-0.3)=([NH_4^+])/([NH_3])10−0.3=[NH+4][NH3]
And we know that [NH_3]=0.50*mol*L^-1[NH3]=0.50⋅mol⋅L−1.
So [NH_4^+]=10^(-0.3)xx0.50*mol*L^-1=0.25*mol*L^-1[NH+4]=10−0.3×0.50⋅mol⋅L−1=0.25⋅mol⋅L−1
Now "concentration"concentration == ("Moles of solute")/("Volume of solution")Moles of soluteVolume of solution, but the volume of solution was SPECIFIED to be 20xx10^-3L20×10−3L.
So "moles of solute"=20xx10^-3cancelLxx0.25*mol*cancel(L^-1)
=5.01xx10^-3*mol of NH_4Cl; and this represents a mass of
5.01xx10^-3*molxx53.49*g*mol^-1=0.268*g.
So a final check,
[NH_4^+]=((0.268*g)/(53.49*g*mol^-1))/(20xx10^-3*L)=0.251*mol*L^-1.
[NH_3]=0.50*mol*L^-1.
Resubstituting into the buffer equation:
pH=pK_a+log_10(((0.251*mol*L^-1))/((0.50*mol*L^-1)))
=9.30+(-0.3)
=9.0 AS REQUIRED....................