Question #b3476

1 Answer
Jun 12, 2017

g'(x)=-tanxcosx["lin"(cosx)]

Explanation:

g(x)=sin["lin"(cosx)]

Let u="lin"(cosx)

And v=cosx

Then g(x)=sinu

And u="lin"v

And g'(x)=d/dx(sinu)xx(du)/dx xx (dv)/dx

d/dx(sinu)=cosu=cos("lin"v)=cos["lin"(cosx)]

(du)/dx=1/v=1/cosx

(d v)/dx=-sinx

g'(x)=cos["lin"(cosx)]xx1/cosx xx -sinx

=-tanxcosx["lin"(cosx)]