Question #b3476 Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer Monzur R. Jun 12, 2017 #g'(x)=-tanxcosx["lin"(cosx)]# Explanation: #g(x)=sin["lin"(cosx)]# Let #u="lin"(cosx)# And #v=cosx# Then #g(x)=sinu# And #u="lin"v# And #g'(x)=d/dx(sinu)xx(du)/dx xx (dv)/dx# #d/dx(sinu)=cosu=cos("lin"v)=cos["lin"(cosx)]# #(du)/dx=1/v=1/cosx# #(d v)/dx=-sinx# #g'(x)=cos["lin"(cosx)]xx1/cosx xx -sinx# #=-tanxcosx["lin"(cosx)]# Answer link Related questions What is the derivative of #y=cos(x)# ? What is the derivative of #y=tan(x)# ? How do you find the 108th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x)# from first principle? How do you find the derivative of #y=cos(x^2)# ? How do you find the derivative of #y=e^x cos(x)# ? How do you find the derivative of #y=x^cos(x)#? How do you find the second derivative of #y=cos(x^2)# ? How do you find the 50th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x^2)# ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 1418 views around the world You can reuse this answer Creative Commons License