Factorize 2(a+b)+a+b6+(a+b)22?

1 Answer
Mar 13, 2017

2(a+b)+a+b6+(a+b)22=(a+b+1312+45712)(a+b+131245712)

Explanation:

2(a+b)+a+b6+(a+b)22

= (2+16)(a+b)+(a+b)22

= 136(a+b)+(a+b)22

= (a+b)2+136(a+b)2

Let a+b=x, then quadratic polynomial inside square bracket becomes x2+136x2 and as

x2+136x2

= x2+2×1312×x+(1312)22(1312)2

= (x+1312)22169144

= (x+1312)2457144

= (x+1312)2(45712)2

= (x+1312+45712)(x+131245712)

and substituting x with a+b, we get

2(a+b)+a+b6+(a+b)22=(a+b+1312+45712)(a+b+131245712)