How do you define a polynomial p(x)p(x) that is zero or negative whenever x in [-2, 1] uu [4, oo)x∈[−2,1]∪[4,∞) ?
1 Answer
Explanation:
Define:
p(x) = -(x+2)(x-1)(x-4) = -x^3+3x^2+6x-8p(x)=−(x+2)(x−1)(x−4)=−x3+3x2+6x−8
graph{ -x^3+3x^2+6x-8 [-10, 10, -15, 15]}
This cubic has a leading negative coefficient
As a result, it satisfies the required conditions.
Any polynomial in
Any positive scalar multiple of
If
{ (q(x) > 0 " for all " x in (-oo, -2) uu (-2, 1) uu (1, 4) uu (4, oo)), (q(x) >= 0 " for all " x in { -2, 1, 4 }) :}
For example, we can multiply
graph{(-x^3+3x^2+6x-8)(x-1)^2(x^2+2) [-10, 10, -240, 700]}