Question #d4611

1 Answer
Oct 8, 2017

dydx=2x2+1 or 2x1x+x1

Explanation:

y=cos1[xx1x+x1]

=cos1[x21x2+1]

Take cosine both sides,

cosy=x21x2+1

Take differentiation both sides,

sinydy=[2x(x2+1)2x(x21)]dx(x2+1)2

1(cosy)2dy=4xdx(x2+1)2

1[x21x2+1]2dy=4xdx(x2+1)2

4x2(x2+1)2dy=4xdx(x2+1)2

2xdyx2+1=4xdx(x2+1)2

dydx=4xdx(x2+1)2x2+12x

dydx=2x2+1 or 2x1x+x1