Solve #{(-a/(a^2-p)=2a),(sqrt(a^2+(p-a)^2)=1):}# ?

1 Answer
Mar 23, 2017

See below.

Explanation:

Considering

#{(-a/(a^2-p)=2a),(sqrt(a^2+(p-a)^2)=1):}#

after dividing by #a# the first equation and squaring both terms into the second, we get

#{(-1/(a^2-p)=2),(a^2+(p-a)^2=1):}#

or

#{(-1=2(a^2-p)),(2a^2-2ap+p^2=1):}#

or

#{(-1=2a^2-2p),(2a^2-2ap+p^2=1):}#

now adding term to term both equation results in

#2a^2-2ap+p^2-1=2a^2-2p+1#

after simplifications

#p^2-2(a-1)p-2=0#

now solving for #p#

#p = (2(a-1)pm sqrt(4(a-1)^2+8))/2=a-1pm sqrt((a-1)^2+2)#

Now taking the first equation

#2a^2=2p-1#

or

#a^2=p-1/2# and substituting

#a^2=2(a-1pm sqrt((a-1)^2+2))-1/2#

or

#a^2-2a+1=-1pm2sqrt((a-1)^2+2)-1/2#

or

#(a-1)^2=pm2sqrt((a-1)^2+2)-3/2#

calling now #a-1=b# we have

#b^2=pm2sqrt(b^2+2)-3/2#

or

#b^2+2/3=pm2sqrt(b^2+2)#

squaring both sides

#(b^2+2/3)^2=4(b^2+2)#

or

#(b^2)^2+4/3b^2+4/9=4b^2+8#

or

#(b^2)^2-8/3b^2-68/9=0#

now solving for #b^2#

#b^2=2/3 (2 pm sqrt[21])#

and

#b=pmsqrt(2/3 (2 pm sqrt[21]))#

or

#a=1pmsqrt(2/3 (2 pm sqrt[21]))#

The next step is the determination of #p# but this is left as an exercise to the reader.

(Don't forget that #p = (2a^2+1)/2#)