The roots of the quadratic 2x^2+3x-1=02x2+3x1=0 are alphaα and betaβ. Without calculating the roots, find alpha^3+beta^3α3+β3?

1 Answer
Apr 1, 2017

alpha^3 + beta^3 = -45/8 α3+β3=458

Explanation:

Suppose the roots of the general quadratic equation:

ax^2+bx+c = 0 ax2+bx+c=0

are alphaα and betaβ , then using the root properties we have:

"sum of roots" \ \ \ \ \ \= alpha+beta = -b/a
"product of roots" = alpha beta \ \ \ \ = c /a

So for the given quadratic with roots alpha and beta:

2x^2+3x-1 = 0

we know that:

alpha+beta = -3/2 \ \ \ ; and \ \ \ alpha beta = -1/2

Consider the binomial expression:

\ \ \ \ \ (alpha+beta)^3 = alpha^3 + 3alpha^2 beta + 3alpha beta^2 + beta^3
:. (alpha+beta)^3 = alpha^3 + beta^3+ 3alpha beta(alpha+beta)
:. \ alpha^3 + beta^3 = (alpha+beta)^3 - 3alpha beta(alpha+beta)

Substituting our values of alpha+beta and alpha beta we get:

alpha^3 + beta^3 = (-3/2)^3 - 3(-1/2)(-3/2)
" " = -27/8 - 9/4
" " = -45/8