Find the argument of (-sqrt3 +i)^8?

1 Answer
Apr 2, 2017

Argument is (2pi)/3

Explanation:

(-sqrt3 +i)^8

= [2(-sqrt3/2+ixx1/2)]^8

= [2(-sqrt3/2+ixx1/2)]^8

= [2(cos((5pi)/6)+isin((5pi)/6))]^8

Now according to DeMoivre's Theorem

(r(costheta+isintheta))^n=r^n(cosntheta+isinntheta)

Hence [2(cos((5pi)/6)+isin((5pi)/6))]^8

= [2^8(cos((5pi)/6xx8)+isin((5pi)/6xx8))]

= 256(cos((20pi)/3)+isin((20pi)/3))

= 256(cos(6pi+(2pi)/3)+isin(6pi+(2pi)/3))

= 256(cos((2pi)/3)+isin((2pi)/3))

Hence while modulus of (-sqrt3 +i)^8 is 256, argument is (2pi)/3