Prove that ln( (1+tan(x/2)) / (1-tan(x/2)) )=ln(sec(x)+tan(x)) ?

1 Answer
Sep 20, 2017

We want to show that:

ln( (1+tan(x/2)) / (1-tan(x/2)) )=ln(sec(x)+tan(x))

Due to the monotonicity of the logarithmic function, this is the same as showing:

(1+tan(x/2)) / (1-tan(x/2)) = sec(x)+tan(x) ..... [A]

For simplicity, put t=tan(x/2)
We will need the tangent half-angle formula:

sin A -= (2tan (A/2))/(1+tan^2(A/2)) => sinx = (2t)/(1+t^2)

cos A -= (1-tan^2(A/2))/(1+tan^2(A/2)) => cos x =(1-t^2)/(1+t^2)

tan A -= (2tan (A/2))/(1-tan^2(A/2)) => tan x = (2t)/(1-t^2)

Then, if we concentrate on the LHS of [A], we have:

LHS = (1+t) / (1-t)

\ \ \ \ \ \ \ \ = (1+t) / (1-t) * (1+t)/(1+t)

\ \ \ \ \ \ \ \ = (1+2t+t^2) / (1-t^2)

\ \ \ \ \ \ \ \ = ((1+t^2) + (2t)) / (1-t^2)

\ \ \ \ \ \ \ \ = (1+t^2)/ (1-t^2) + (2t)/ (1-t^2)

\ \ \ \ \ \ \ \ = 1/cosx + tanx

\ \ \ \ \ \ \ \ = secx + tanx QED