What are the possible rational zeros of #P(x) = 4x^4+19x^3-x^2+19x-5# ?
1 Answer
The "possible" rational zeros are:
The actual rational zeros are:
The other two zeros are:
Explanation:
Given:
#P(x) = 4x^4+19x^3-x^2+19x-5#
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/4, +-1/2, +-1, +-5/4, +-5/2, +-5#
We find:
#P(1/4) = 4(color(blue)(1/4))^4+19(color(blue)(1/4))^3-(color(blue)(1/4))^2+19(color(blue)(1/4))-5#
#= 1/64+19/64-4/64+304/64-320/64 = 0#
So
#4x^4+19x^3-x^2+19x-5 = (4x-1)(x^3+5x^2+x+5)#
#color(white)(4x^4+19x^3-x^2+19x-5) = (4x-1)((x^3+5x^2)+(x+5))#
#color(white)(4x^4+19x^3-x^2+19x-5) = (4x-1)(x^2(x+5)+1(x+5))#
#color(white)(4x^4+19x^3-x^2+19x-5) = (4x-1)(x^2+1)(x+5)#
#color(white)(4x^4+19x^3-x^2+19x-5) = (4x-1)(x^2-i^2)(x+5)#
#color(white)(4x^4+19x^3-x^2+19x-5) = (4x-1)(x-i)(x+i)(x+5)#
So the rational zeros are