Given the following molar absorptivities of amino acids in "0.1 M"0.1 M phosphate buffer at "pH 7"pH 7, find the ratio of the absorbance at "260 nm"260 nm over "280 nm"280 nm, the A260:A280A260:A280 ratio, for a mixture of "2 mol"2 mol of "Trp"Trp and "1 mol"1 mol of "Tyr"Tyr?
epsilon_("Trp", 260) ~~ "3765 L/mol"cdot"cm"εTrp,260≈3765 L/mol⋅cm
epsilon_("Trp", 280) ~~ "5563 L/mol"cdot"cm"εTrp,280≈5563 L/mol⋅cm
epsilon_("Tyr", 260) ~~ "585 L/mol"cdot"cm"εTyr,260≈585 L/mol⋅cm
epsilon_("Tyr", 280) ~~ "1185 L/mol"cdot"cm"εTyr,280≈1185 L/mol⋅cm
epsilon_("Trp", 260) ~~ "3765 L/mol"cdot"cm"εTrp,260≈3765 L/mol⋅cm
epsilon_("Trp", 280) ~~ "5563 L/mol"cdot"cm"εTrp,280≈5563 L/mol⋅cm
epsilon_("Tyr", 260) ~~ "585 L/mol"cdot"cm"εTyr,260≈585 L/mol⋅cm
epsilon_("Tyr", 280) ~~ "1185 L/mol"cdot"cm"εTyr,280≈1185 L/mol⋅cm
1 Answer
Given the above quantities:
epsilon_("Trp", 260) ~~ "3765 L/mol"cdot"cm"εTrp,260≈3765 L/mol⋅cm
epsilon_("Trp", 280) ~~ "5563 L/mol"cdot"cm"εTrp,280≈5563 L/mol⋅cm
epsilon_("Tyr", 260) ~~ "585 L/mol"cdot"cm"εTyr,260≈585 L/mol⋅cm
epsilon_("Tyr", 280) ~~ "1185 L/mol"cdot"cm"εTyr,280≈1185 L/mol⋅cm
We know from Beer's law that
A = epsilonbcA=εbc ,where
AA is absorbance,bb is the path length of the cuvette, andcc is the concentration of the substance...
And so,
Therefore, we can formulate an equation for the
color(blue)(A_(260)/A_(280)) = (sum_i n_i epsilon_(260,i))/(sum_i n_i epsilon_(280,j))A260A280=∑iniε260,i∑iniε280,j
= ("2 mol Trp" cdot "3765 L/mol"cdot"cm" + "1 mol Tyr" cdot "585 L/mol"cdot"cm")/("2 mol Trp" cdot "5563 L/mol"cdot"cm" + "1 mol Tyr" cdot "1185 L/mol"cdot"cm")=2 mol Trp⋅3765 L/mol⋅cm+1 mol Tyr⋅585 L/mol⋅cm2 mol Trp⋅5563 L/mol⋅cm+1 mol Tyr⋅1185 L/mol⋅cm
= color(blue)(0.659)=0.659
[Oh look, this article has the same equation...](https://www.biotek.com/resources/application-notes/nucleic-acid-purity-assessment-using-a260/a280-ratios/)