How to find the average value of the function on the interval [1,8] ?
1 Answer
Mar 8, 2016
Explanation:
The average value of the function
#"average value"=1/(b-a)int_a^bf(x)#
So, we know that
#"average value"=1/(8-1)int_1^8root3x#
Simplify the function so we can integrate it easily:
#"average value"=1/7int_1^8x^("1/3")#
To find the indefinite integral of
#intx^n=x^(n+1)/(n+1)#
Yielding:
#"average value"=1/7[x^("4/3")/(4/3)]_1^8=1/7[3/4x^("4/3")]_1^8#
Evaluate:
#"average value"=1/7(3/4(8^("4/3"))-3/4(1^("4/3")))#
#"average value"=1/7(3/4(16)-3/4(1))#
#"average value"=1/7(45/4)#
#"average value"=45/28#